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Interpolation of spatially distributed data is a key element in geo-environmental sciences [1]. Despite 

the importance of these methods and their widespread use, an analysis of the literature [2] reveals 

major limitations when data are “SIC”, i.e. Sparse (i.e. small number of observations, e.g., ~100 over 

several 10km²), Imprecise (subject to measurement errors), and Clustered (heterogeneously 

distributed), which are commonly encountered in Earth sciences (see examples Figure 1 for geophysics, 

geology, soil pollution and natural hazards). While there are innumerable examples of its application, 

one important observation is the low proportion of studies proposing the estimation of uncertainties 

(<5%). 

 

Figure 1. Illustration of SIC situations: (A) Sparse data of Cesium concentration [3]; (B) Sparse and 

clustered measurement locations for ground motion monitoring [4]; (C) Sparse and clustered data 

for geochemical background mapping in Toulouse city [5]; (D) Large number but clustered data 

for loose sediment thickness mapping in Pays de Loire [6]. 

Yet uncertainties can be multiple and of different natures, and more specifically, the uncertainty linked 

to the imperfection of knowledge (epistemic) can be significant in applications with high societal stakes 

in urban environments. One promising avenue for taking full and transparent account of uncertainties 

is that of imprecise probability theory (including, in particular, possibility theory [7] and Dempster 

Shafer theory [8],[9]). This framework has its foundations in classical probability theory and can be 

seen as a generalization of the Bayesian framework, bringing an additional degree of flexibility to 

express different types of uncertainty. 



In machine learning, the total uncertainty of a prediction sums from two uncertainty types, arising 

from different sources: aleatoric and epistemic [10]. The former reflects the irreducible noise and 

ambiguity in the data due to class overlap, while the latter is related to the lack of knowledge about 

model parameters, and can be reduced by expanding the training dataset. These approaches are of 

growing interest due to the need for confidence in the prediction model [11], [12]. recently this 

approach has been extended in context of imprecise probability [13]. 

The aim of this post doc is to study and propose methods for decomposing and evaluating uncertainties 

in the context of spatial interpolation such as kriging [14] [15], IDW [16], based on the above theories 

of uncertainty.  
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